近期,中国科学院云南天文台太阳物理研究团组副研究员洪俊超及其合作者研究员季凯帆、刘辉等人开展太阳观测分析与人工智能学习的学科交叉研究,基于当前主流的日冕极紫外波段成像数据,利用机器学习方法预测日冕软X射线波段辐射。相关研究结果以Mapping Solar X-Ray Images from SDO/AIA EUV Images by Deep Learning为题,发表在《天体物理学杂志》上。
日冕作为太阳大气的外层,由十分稀薄的、温度高达百万度甚至千万度的等离子体组成。日冕中的自由电子被附近离子的电场散射,通过自由-自由跃起损失动能并辐射光子(free-free emission),这一物理过程是日冕极紫外波段和软X射线波段辐射的主要来源,也因此可在极紫外波段和软X射线波段对日冕等离子体结构进行成像探测。
近年来,全日面日冕的探测主要来源于极紫外波段的成像观测,由空间卫星SDO的太阳大气成像仪AIA每12秒在6个极紫外波段(171、193、211、335、131、94埃)同时进行全日面成像。而另外一台卫星Hinode的软X射线望远镜XRT每天只在几个固定的时刻对日冕进行少量的全日面软X射线波段成像。
该研究采用一种机器(深度)学习方法——人工智能卷积神经网络,统计分析配对的AIA与XRT数据,建立了由AIA 6波段观测至XRT软X射线观测的映射模型。研究表明,该模型能构造出与真实观测一致的软X射线数据,从而能够缓解当前关于日冕软X射线观测的缺失。通过该方法预测日冕软X射线观测,比传统方法利用极紫外日冕观测反演日冕微分辐射测量(DEM)再预测软X射线观测更便捷、更快、更精确。研究进一步发现,结合由该方法预测的软X-射线虚拟数据和实际观测的日冕极紫外数据,可对日冕DEM作更为精确的反演,尤其是针对具有较高温度等离子体(五百万度以上)的日冕特征。未来,由机器学习虚拟的多波段观测可能为某些具体的太阳物理分析(如日冕结构热分布)提供数据辅助。
该研究获得了国家自然科学基金重点项目和面上项目、中科院太阳活动重点实验室,以及科技部重大项目的支持。